FAST COMMUNICATIONS

Contributions intended for this section should be submitted to any of the Co-editors of Acta Crystallographica or Journal of Applied Crystallography. In the letter accompanying the submission authors should state why rapid publication is essential. The paper should not exceed two printed pages (about 2000 words or eight pages of double-spaced typescript including tables and figures) and figures should be clearly lettered. If the paper is available on $5.25^{\prime \prime}$ IBM PC compatible or 3.5" Apple /Macintosh diskettes it would be helpful if these could be sent with the manuscript together with details of the word-processing package used. Papers not judged suitable for this section will be considered for publication in the appropriate section of Acta Crystallographica or in Journal of Applied Crystallography.

Acta Cryst. (1993). B49, 784-786

1-Carbonyl- μ-carboxylato-1 $\kappa C: 2 \kappa O: 2 \kappa O^{-}-1-\eta^{5}$-indenyl-2,2,2-triphenyl-1-(triphenylphosphine)irontin

By Dorothy H. Gibson,* John F. Richardson* and Okey P. Mbadike
Department of Chemistry, University of Louisville, Louisville, KY 40292, USA

(Received 26 March 1993; accepted 24 May 1993)

Abstract

FeSn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)(\mathrm{CO})\left(\mathrm{CO}_{2}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right]\), $M_{r}=855.33$, monoclinic, $P 2_{1} / n, a=17.715$ (5), b $=13.156$ (4), $c=17.749(5) \AA, \beta=112.22(3)^{\circ}, V$ $=3829.2 \AA^{3}, Z=4, D_{x}=1.48 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha(\lambda$ $=0.71073 \AA$) , $\mu=11.1 \mathrm{~cm}^{-1}, F(000)=1736, T=$ $296 \mathrm{~K}, 7057$ unique reflections, $R=0.027, w R=0.031$ for 5480 observed reflections with $I>3 \sigma(I)$. The coordination environment about the Fe atom consists of a triphenylphosphine, the five-membered ring of the indenyl ligand, a carbonyl and a C-bound carboxylate. A triphenyltin unit is bound to the O atoms of the carboxylate group giving a bimetallic complex. The $\mathrm{Sn}-\mathrm{O}$ bond lengths differ by $0.467 \AA$ which is considerably more than the difference observed for the related cyclopentadienyl analog; the steric demands of the bulky indenyl ligand are responsible for this difference. The geometry about the Sn atom is best described as a distorted trigonal bipyramid.

Introduction. The possibility for thermal activation of CO_{2} through bifunctional systems having a highly basic metal center to bind carbon and an acidic center to bind one or both O atoms was suggested previously (Gambarotta, Arena, Floriani \& Zanuzzi, 1982). As part of a general effort to synthesize and characterize bimetallic CO_{2}-bridged compounds (Gibson, Richardson \& Ong, 1991; Gibson, Ye \& Richardson, 1992) we have prepared the title compound (see Fig. 1); its structure determination and comparisons with two other closely related compounds are presented herein.

Experimental. Under nitrogen, $\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{Fe}(\mathrm{CO})_{2}-$ $\left(\mathrm{PPh}_{3}\right)^{+} . \mathrm{I}^{-}(2.00 \mathrm{~g}, 3.25 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{SnCl}(1.25 \mathrm{~g}$,

[^0]3.25 mmol) were dissolved in 15 ml of THF and cooled to 273 K . A solution of $\mathrm{KOH}(0.73 \mathrm{~g}, 13.0 \mathrm{mmol})$ in 2 ml of $\mathrm{H}_{2} \mathrm{O}$ was added, with stirring, to this mixture. The mixture was allowed to stir for 10 min and became dark red during this time. Cold (273 K) water, 15 ml , was added and the mixture was then transferred to a separatory funnel to separate the organic layer. This layer was then dried over MgSO_{4}, filtered, and concentrated on a rotary evaporator. Cold ether (30 ml) was then added to precipitate the product as a red-orange powder $(1.50 \mathrm{~g}$, 54% yield). A sample of the product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was carefully layered with pentane and then chilled to 243 K ; orange crystals were obtained after 1 week.

X-ray diffraction data were obtained with an EnrafNonius CAD-4H diffractometer, Mo $K \alpha$ radiation, incident-beam graphite monochromator, from an orange pyramidal crystal having approximate dimensions 0.23 $\times 0.32 \times 0.40 \mathrm{~mm}$ mounted on a glass fiber in a random orientation. The cell dimensions were taken from a leastsquares refinement of the setting angles of 25 reflections whose θ angles ranged from 13 to 16°. An orthorhombic C-centered cell ($a=19.775, b=29.439, c=13.156 \AA$, $\alpha=\beta=90, \gamma=89.88^{\circ}$) was considered but eliminated due to the lack of mmm symmetry [axial photos; $R_{\text {int }}\left(F^{2}\right)$ $=0.54$ for observed equivalent reflections]. Data were

Fig. 1. Sketch of the title complex ($\mathrm{Ph}=$ phenyl ring).

ISSN 0108-7681 © 1993
collected using the $\omega / 2 \theta$-scan technique for $-h+k \pm l$ to a maximum 2θ of 50° over the range $21,15,21$ for h, k, l. Three standard reflections ($\overline{10} 55, \overline{2} 10,06 \overline{2}$) were measured every 60 min of exposure time as a check on crystal stability and showed no variation (0.1%).

A total of 7586 reflections were collected of which 7057 were unique; 5480 were considered observed with $I>3 \sigma(I)$, where I was determined from counting statistics (1577 unobserved reflections). $R_{\text {int }}(F)=0.018$ for 724 reflections. The structure was solved by the Patterson technique (Sn atom) and subsequent leastsquares and difference Fourier cycles; H atoms were included in calculated positions ($\mathrm{C}-\mathrm{H}=0.97 \AA$) with isotropic thermal parameters set to 1.3 times the value of $B_{\text {eq }}$ of the bonded atom. H -atom parameters were not refined. Data were corrected for Lorentz and polarization factors as well as absorption (ψ scans) with transmission coefficients ranging from 0.975 to 0.999 .

An isotropic extinction parameter could not be refined. The structure was refined in full-matrix least squares where the function minimized was $\Sigma w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}, w=\left[\sigma(F)^{2}+(0.005 F)^{2}+0.2\right]^{-1}$ (Killean \& Lawrence, 1969). Atomic scattering factors used were those of Cromer \& Waber (1974) and were corrected for anomalous-dispersion effects (Cromer, 1974). The model converged (maximum $\Delta / \sigma<0.01$) for 5480 reflections and 478 variables with $R=0.027, w R=0.031$, $S=1.16$ and the highest peak on a difference Fourier map of 0.59 (6) e \AA^{-3} associated with the Sn atom. All calculations were performed on a VAXstation 3100 computer using MolEN (Fair, 1990). Final positional and equivalent isotropic thermal parameters for non-H atoms are given in Table 1.*

Discussion. Fig. 2 gives a view of the molecule with the atomic numbering focused on the bonding mode of the bridging CO_{2} ligand to the two metal centers. Selective bond lengths and angles are given in Table 2.

The structure exhibits several differences when compared to $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CO}_{2} \mathrm{SnPh}_{3}$ (Gibson et al., 1991) and ($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \mathrm{CO}_{2} \mathrm{SnPh}_{3}$ (Senn, Gladysz, Emerson \& Larsen, 1987); the latter two compounds are structurally very similar. The $\mathrm{O}-\mathrm{Sn}$ bonds in the indenyl complex differ by 0.467 (3) $\AA[2.069$ (2) and $2.536(2) \AA]$ and thus exhibit the distorted bidentate bonding characteristic of monomeric triaryltin organocarboxylates (Holmes, Day, Chandrasekhar, Vollano \& Holmes, 1986) whereas the cyclopentadienyliron and rhenium complexes show a much smaller difference in the carboxyl O Sn bond lengths. It should be noted also that the

[^1]Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$
$B_{\text {eq }}=(4 / 3)\left[a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+(2 a b \cos \gamma) \beta_{12}+(2 a c \cos \beta) \beta_{13}\right.$ $\left.+(2 b c \cos \alpha) \beta_{23}\right]$.

	x	y	z	$B_{\text {eq }}$
Sn	0.96496 (1)	0.50428 (2)	0.72248 (1)	2.757 (4)
Fe	0.94649 (3)	0.16985 (3)	0.78915 (3)	2.442 (9)
P	0.97339 (5)	0.11568 (6)	0.68333 (5)	2.47 (2)
Ol	1.1067 (2)	0.1341 (2)	0.9108 (2)	5.60 (8)
O2	0.9189 (1)	0.3580 (2)	$0.7091{ }^{(1)}$	3.22 (5)
O 3	1.0366 (1)	0.3547 (2)	0.8106 (1)	3.43 (5)
C1	1.0445 (2)	0.1484 (3)	0.8605 (2)	3.44 (8)
C2	0.9745 (2)	0.3068 (2)	0.7700 (2)	2.80 (7)
C3	0.8339 (2)	0.0769 (3)	0.7632 (2)	3.51 (8)
C4	0.8191 (2)	0.1831 (3)	0.7420 (2)	3.71 (8)
C5	0.8537 (2)	0.2398 (3)	0.8142 (2)	4.00 (8)
C6	0.8958 (2)	0.1738 (3)	0.8785 (2)	3.99 (8)
C7	0.8816 (2)	0.0719 (3)	0.8481 (2)	3.63 (8)
C8	0.9027 (3)	-0.0234 (3)	0.8874 (3)	5.1 (1)
C9	0.8757 (3)	-0.1087 (3)	0.8424 (3)	6.3 (1)
C10	0.8287 (2)	-0.1038 (3)	0.7587 (3)	5.7 (1)
C11	0.8082 (2)	-0.0149 (3)	0.7186 (2)	4.70 (9)
C21	0.9721 (2)	0.5681 (2)	0.8355 (2)	3.01 (7)
C22	1.0451 (2)	0.5828 (3)	0.9010 (2)	4.36 (9)
C23	1.0457 (3)	0.6179 (3)	0.9739 (2)	5.1 (1)
C24	0.9741 (3)	0.6364 (3)	0.9845 (2)	5.0 (1)
C25	0.9020 (2)	0.6233 (3)	0.9204 (2)	5.0 (1)
C26	0.9009 (2)	0.5902 (3)	0.8463 (2)	3.98 (9)
C31	1.0645 (2)	0.5253 (2)	0.6846 (2)	3.09 (7)
C32	1.1446 (2)	0.5147 (3)	0.7375 (2)	4.59 (9)
C33	1.2081 (2)	0.5356 (3)	0.7135 (3)	5.5 (1)
C34	1.1923 (2)	0.5668 (4)	0.6355 (3)	5.7 (1)
C35	1.1134 (3)	0.5771 (4)	0.5820 (2)	5.6 (1)
C36	1.0499 (2)	0.5571 (3)	0.6063 (2)	4.19 (9)
C41	0.8590 (2)	0.5717 (3)	0.6315 (2)	3.14 (7)
C42	0.7961 (2)	0.5165 (3)	0.5766 (2)	4.4 (1)
C43	0.7303 (2)	0.5648 (4)	0.5188 (3)	5.2 (1)
C44	0.7258 (2)	0.6679 (4)	0.5153 (2)	4.9 (1)
C45	0.7865 (3)	0.7244 (3)	0.5700 (2)	4.9 (1)
C46	0.8529 (2)	0.6765 (3)	0.6272 (2)	3.95 (9)
C51	1.0203 (2)	-0.0105 (2)	0.6951 (2)	2.91 (7)
C52	1.0220 (2)	-0.0724 (3)	0.7587 (2)	3.82 (9)
C53	1.0586 (2)	-0.1680 (3)	0.7689 (3)	4.8 (1)
C54	1.0928 (2)	-0.2007 (3)	0.7163 (3)	5.3 (1)
C55	1.0922 (2)	-0.1400 (3)	0.6533 (3)	5.2 (1)
C56	1.0562 (2)	-0.0450 (3)	0.6428 (2)	4.26 (9)
C61	1.0460 (2)	0.1891 (3)	0.6555 (2)	3.05 (7)
C62	1.1195 (2)	0.2160 (3)	0.7161 (2)	4.19 (9)
C63	1.1789 (2)	0.2639 (4)	0.6975 (3)	5.7 (1)
C64	1.1669 (3)	0.2868 (4)	0.6200 (3)	6.6 (1)
C65	1.0944 (3)	0.2618 (4)	0.5585 (3)	7.0 (1)
C66	1.0340 (2)	0.2135 (4)	0.5759 (2)	5.2 (1)
C71	0.8841 (2)	0.1080 (3)	0.5882 (2)	3.00 (7)
C72	0.8390 (2)	0.1970 (3)	0.5610 (2)	3.62 (8)
C73	0.7683 (2)	0.1956 (3)	0.4923 (2)	4.28 (9)
C74	0.7413 (2)	0.1067 (4)	0.4503 (2)	5.1 (1)
C75	0.7855 (3)	0.0193 (3)	0.4754 (2)	5.1 (1)
C76	0.8576 (2)	0.0192 (3)	0.5445 (2)	3.97 (9)

difference in the carboxyl $\mathrm{C}-\mathrm{O}$ bond lengths of 0.100 (4) $\AA[1.336$ (3) and 1.236 (3) \AA] in the indenyl compound is larger than in the $\mu_{2}-\eta^{2}-\mathrm{CO}_{2}$-bridged compound $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{CO}_{2} \mathrm{Re}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)$ [0.072 (4) $\AA ; 1.226$ (3) and 1.298 (3) \AA] (Gibson et al., 1992) in which only one carboxyl O atom is bound to the Re atom. The $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ bond angles in the

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Sn}-\mathrm{O} 2$	$2.069(2)$	$\mathrm{Fe}-\mathrm{C} 3$	$2.234(3)$
$\mathrm{Sn}-\mathrm{O} 3$	$2.536(2)$	$\mathrm{Fe}-\mathrm{C} 4$	$2.097(3)$
$\mathrm{Sn}-\mathrm{C} 21$	$2.134(3)$	$\mathrm{Fe}-\mathrm{C} 5$	$2.074(4)$
$\mathrm{Sn}-\mathrm{C} 31$	$2.130(4)$	$\mathrm{Fe}-\mathrm{C} 6$	$2.097(4)$
$\mathrm{Sn}-\mathrm{C} 41$	$2.150(3)$	$\mathrm{Fe}-\mathrm{C} 7$	$2.233(4)$
$\mathrm{Fe}-\mathrm{P}$	$2.223(1)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.336(3)$
$\mathrm{Fe}-\mathrm{C} 1$	$1.742(3)$	$\mathrm{O} 3-\mathrm{C} 2$	$1.236(3)$
$\mathrm{Fe}-\mathrm{C} 2$	$1.933(3)$		
$\mathrm{O} 2-\mathrm{Sn}-\mathrm{O} 3$	$55.42(7)$	$\mathrm{C} 1-\mathrm{Fe}-\mathrm{C} 2$	$91.6(1)$
$\mathrm{O} 2-\mathrm{Sn}-\mathrm{C} 21$	$110.8(1)$	$\mathrm{Fe}-\mathrm{P}-\mathrm{C} 51$	$115.3(1)$
$\mathrm{O} 2-\mathrm{Sn}-\mathrm{C} 31$	$115.0(1)$	$\mathrm{Fe}-\mathrm{P}-\mathrm{C} 61$	$117.3(1)$
$\mathrm{O} 2-\mathrm{Sn}-\mathrm{C} 41$	$95.9(1)$	$\mathrm{Fe}-\mathrm{P}-\mathrm{C} 71$	$114.3(1)$
$\mathrm{O} 3-\mathrm{Sn}-\mathrm{C} 21$	$83.5(1)$	$\mathrm{C} 51-\mathrm{P}-\mathrm{C} 61$	$100.1(2)$
$\mathrm{O} 3-\mathrm{Sn}-\mathrm{C} 31$	$90.8(1)$	$\mathrm{C} 51-\mathrm{P}-\mathrm{C} 71$	$104.6(1)$
$\mathrm{O} 3-\mathrm{Sn}-\mathrm{C} 41$	$151.0(1)$	$\mathrm{C} 61-\mathrm{P}-\mathrm{C} 71$	$103.4(2)$
$\mathrm{C} 21-\mathrm{Sn}-\mathrm{C} 31$	$118.9(1)$	$\mathrm{Sn}-\mathrm{O} 2-\mathrm{C} 2$	$103.8(2)$
$\mathrm{C} 21-\mathrm{Sn}-\mathrm{C} 41$	$105.6(1)$	$\mathrm{Sn}-\mathrm{O} 3-\mathrm{C} 2$	$84.7(2)$
$\mathrm{C} 31-\mathrm{Sn}-\mathrm{C} 41$	$107.5(1)$	$\mathrm{Fe}-\mathrm{C} 2-\mathrm{O} 2$	$116.9(2)$
$\mathrm{P}-\mathrm{Fe}-\mathrm{C} 1$	$95.1(1)$	$\mathrm{Fe}-\mathrm{C} 2-\mathrm{O} 3$	$127.1(2)$
$\mathrm{P}-\mathrm{Fe}-\mathrm{C} 2$	$90.0(1)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 3$	$115.9(3)$

carboxyl ligand are also highly distorted in the indenyl complex in comparison to the cyclopentadienyliron and rhenium complexes or to tin organocarboxylates; the latter compounds show nearly equal $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ angles while the indenyl complex shows a difference of $10.2(3)^{\circ}$ [$116.9(2)$ and $127.1(2)^{\circ}$]. The distortions which occur in the indenyl complex are the result of severe steric interactions between the six-membered ring of the indenyl ligand and a phenyl ring of the phosphine ligand bound to the Fe atom. Note that these distortions occur in spite of the usual 'slipped' nature (O'Connor \&

Fig. 2. ORTEP (Johnson, 1965) plot showing the atomic numbering system. The thermal ellipsoids are drawn at the 50% probability level.

Casey, 1987) of the five-membered ring in the indenyl ligand in bonding to the Fe atom, which shifts this center away from the arene ring in the indenyl ligand.

Whereas the Sn atom in tin organocarboxylates and the cyclopentadienyl-substituted iron or rhenium complexes lies in the plane of the atoms of the bridging carboxyl group, the Sn atom is pushed significantly out of this plane in the indenyl complex, a further change prompted by the steric effects of the indenyl ligand. The geometry about the Sn atom is also distorted more than in the cyclopentadienyl complexes; the sum of the equatorial bond angles is $344.7(2)^{\circ}$ as compared to $349.8(2)^{\circ}$ in the cyclopentadienyl iron compound and 351.2 (2) ${ }^{\circ}$ in the cyclopentadienyl rhenium complex. Displacement of the Sn atom from the equatorial plane was 0.28 (1) \AA towards the indenyl unit. The angle between the $\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 3$ plane and the $\mathrm{Fe}-\mathrm{C} 1-\mathrm{O} 1$ vector is $8(3)^{\circ}$, comparable to the value of $9(3)^{\circ}$ in the cyclopentadienyl iron compound.

Support of this work by the United States Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences is gratefully acknowledged. The X-ray equipment was purchased with assistance from the National Science Foundation (CHE 9016978). We wish to thank Dr Mark Mashuta for his assistance in collecting the diffraction data.

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
FAIR, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Gambarotta, S., Arena, F., Floriani, C. \& Zanuzzi, P. F. (1982). J. Am. Chem. Soc. 104, 5082-5092.
Gibson, D. H., Richardson, J. F. \& Ong, T.-S. (1991). Acta Cryst. C47, 259-261.
Gibson, D. H., Ye, M. \& Richardson, J. F. (1992). J. Am. Chem. Soc. 114, 9716-9717.
Holmes, R. R., Day, R. O., Chandrasekhar, V., Vollano, J. F. \& Holmes, J. M. (1986). Inorg. Chem. 25, 2490-2494.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Killean, R. C. G. \& Lawrence, J. L. (1969). Acta Cryst. B25, 17501752.

O'CONNOR, J. M. \& CASEY, C. P. (1987). Chem. Rev. 87, 307-318.
Senn, D. R., Gladysz, J. A., Emerson, K. \& Larsen, R. D. (1987). Inorg. Chem. 26, 2737-2739.

[^0]: * Authors to whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, bond lengths, bond angles, torsion angles and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71154 (37 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ST0609]

